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 8 
Abstract. The ERA5 climate reanalysis dataset plays an important role in applications such as monitoring 9 
and modelling climate system changes in polar regions, so the calibration of the reanalysis to ground 10 
observations is of great relevance. Here, we compare the 2-meter air temperature time series of the ERA5 11 
reanalysis to the near-ground air temperature measured in 17 Automatic Weather Stations in the 12 
McMurdo Sound, Antarctica. We find that the reanalysis data has a systematic cold bias of ~ 5°C. Our 13 
results show that future work should rely on secondary observations to calibrate when using the ERA5 14 
reanalysis in polar regions. 15 
 16 
Short Summary. By analyzing temperature time series over more than 20 years, we have found a 17 
discrepancy between the 2-meter temperature values reported by the ERA5 reanalysis and the Automatic 18 
Weather Stations in the McMurdo Sound, Antarctica. The ERA5 reanalysis temperatures are 19 
systematically colder by ~5°C. 20 

1. Introduction 21 

 22 

ERA5 dataset represents the fifth iteration of ECMWF (European Center for Medium-Range Weather 23 

Forecasts) global climate hindcasting derived by combination of climate data assimilation and climate 24 

simulations (Hersbach et al, 2020). With its global coverage, high temporal resolution, and relatively high 25 

spatial resolution of 31 km this dataset may prove particularly useful for research in polar regions such as 26 
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Antarctica, where long-term climate observations are geographically sparse and often temporally 27 

discontinuous (Lazzara et al, 2012). A recent study found encouraging agreement between ERA5 output 28 

and AWS (Automatic Weather Station) data from 13 stations located in the southern section of Antarctic 29 

Peninsula (Tetzner et al., 2019).  30 

 31 

Here, we report the results of a comparison between monthly 2-meter air and ground temperatures in the 32 

McMurdo region, Antarctica, reported in the ERA5 dataset and corresponding observations from 17 AWS 33 

locations across this region. We focus our analysis on this region because of the relatively high spatial 34 

and temporal coverage of AWS observations and due to the high multidisciplinary research interest in 35 

this region which contains the main USA and New Zealand research stations and is proximal to Italian 36 

and Korean research stations. Despite the encouraging results found by Tetzner et al. (2019) for the 37 

southern Antarctic Peninsula, we find a significant cold bias in ground temperatures and air temperatures 38 

in our study area. 39 

2. Data and methods 40 

We analyze the daily surface temperature (2-meter temperature) recorded at 17 AWS (Figure 1) managed 41 

by the McMurdo Dry Valleys Long Term Ecological Research Project (LTER) since 1992, although some 42 

of the stations have been reporting data only since 1986 (Doran et al., 2002; ). We compare the AWS data 43 

to the monthly ECMWF ERA5 climate reanalysis surface temperature data (Muñoz Sabater, 2019) and 44 

we also we tested against the near-surface bias-corrected reanalysis dataset (Cucchi et al., 2022). For each 45 
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LTER AWS, where daily 2-meter air temperature data was available, we ran a 30-day moving average 46 

filter with 0% overlap to obtain monthly time series. The ERA5 grid node used in comparisons to each 47 

individual AWS was selected by minimizing the haversine distance between each AWS and all the nodes 48 

in the reanalysis grid. Finally, we interpolated both time series to a regular monthly sequence. The time 49 

series for the ERA5 node data were truncated to match the periods where data was available at their 50 

corresponding AWS. We report the mean temperature for the span of each time series and the standard 51 

error of the mean for each sample. 52 

Furthermore, we compare the two data sets by analyzing the correlograms and performing a linear 53 

regression. Figure 2.b shows an example of this comparison. We report the squared correlation 54 

coefficients (R2) as a metric of the goodness of fit and the p-values from the F-statistic to assess the level 55 

of statistical significance. 56 

3. Results 57 

Table 1 summarizes the results of our comparison. Even though some of the largest differences in the 58 

mean between the AWS station and the closest ERA5 grid node are observed for stations at high altitudes 59 

(e.g., Beacon Valley and Mt. Fleming) there are other stations at relatively high altitudes that report a 60 

smaller bias (e.g., Friis Hills) and conversely, the Taylor Valley AWS station is not at a high altitude, but 61 

it does report a significant bias. The only station where the ERA5 average temperature was warmer than 62 

the corresponding AWS was located at Lake Vida, in Wright Valley. 63 
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Table 1. List of available AWS in the McMurdo Dry Valleys region and comparison to ERA5 closest node. 

AWS Location 
name 

AWS 
ID 

Latitude Longitude Elevation 
(m.a.s.l.) 

Distance 
to ERA5 

node 
(km) 

AWS data 
date range 

Avg 2m air 
temperature 

@ AWS 

Avg 2m air 
temperature 

@ ERA5 
node 

AWSmean_temp-
ERA5mean_temp 

Beacon Valley BENM -77.828 160.6569 1176.0 3.27 2000-12-11 - 
2012-11-19 

-21.48 ± 0.7 -33.39 ± 0.69 11.91 ± 1.39  

Lake Bonney BOYM -77.7147 162.4646 64.0 1.84 1993-12-08 - 
2018-10-09 

-17.26 ± 0.61 -23.85 ± 0.43 6.59 ± 1.04 

Lake 
Brownworth 

BRHM -77.4344 162.7036 279.0 3.83 1995-01-23 - 
2018-11-10 

-19.94 ± 0.66 -25.28 ± 0.52 5.34 ± 1.18 

Canada Glacier CAAM -77.6133 162.9644 264.0 1.71 1994-12-18 - 
2011-01-05 

-16.36 ± 0.72 -22.93 ± 0.61 6.57 ± 1.33 

Commonwealth 
Glacier 

COHM -77.5646 163.2823 290.0 3.96 1993-12-06 - 
2018-10-30 

-17.69± 0.47 -21.94 ± 0.51 4.25 ± 0.98 

Explorer's Cove EXEM -77.5887 163.4175 25.0 1.32 1997-12-05 - 
2018-11-23 

-18.97 ± 0.7 -21.51 ± 0.55 2.54 ± 1.25 

Mt. Fleming FLMM -77.5327 160.2714 1870.0 3.7 2011-01-22 - 
2018-11-11 

-24.2 ± 0.58 -33.84 ± 0.76 9.65 ± 1.34 

Lake Fryxell FRLM -77.6113 163.1701 19.0 1.45 1994-12-12 - 
2018-11-19 

-19.78 ± 0.7 -22.22 ± 0.51 2.44 ± 1.21 

Friis Hills FRSM -77.7474 161.5162 1591.0 5.28 2011-01-04 - 
2018-11-06 

-22.56 ± 0.63 -26.69 ± 0.75 4.13 ± 1.38 

Garwood Ice 
Cliff 

GAFM -78.0259 164.1315 51.0 2.97 2012-01-24 - 
2012-12-19 

-16.66 ± 2.79 -23.49 ± 2.28 6.84 ± 5.07 

Howard Glacier HODM -77.6712 163.0773 472.0 3.25 1993-12-04- 
2018-10-31 

-17.18 ± 0.44 -20.6 ± 0.47 3.42 ± 0.91 

Lake Hoare HOEM -77.6254 162.9005 77.0 2.82 1987-11-25 - 
2018-11-29 

-17.61 ± 0.51 -23.53± 0.42 5.92 ± 0.93 

Miers Valley MISM -78.1011 163.7877 51.0 0.31 2012-02-11 - 
2018-11-06 

-16.69 ± 0.97 -23.1 ± 0.91 6.41 ± 1.88 

Taylor Glacier TARM -77.74 162.1314 334.0 4.51 1994-12-05 - 
2018-11-05 

-16.9 ± 0.5 -25.23 ± 0.43 8.34 ± 0.93 

Upper Howard UHDM -77.686 163.145 N/A 1.89 2001-11-28 - 
2003-12-24 

-16.56 ± 1.49 -20.15 ± 1.73 3.59 ± 3.22 
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Lake Vanda VAAM -77.5257 161.6913 296.0 2.87 1994-12-08 - 
2018-12-07 

-19.58 ± 0.75 -24.96 ± 0.44 5.38 ± 1.19 

Lake Vida VIAM -77.3778 161.8007 351.0 2.47 1995-12-08 - 
2018-11-14 

-26.68 ± 0.96 -23.93 ± 0.48 -2.74 ± 1.44 
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 64 

 65 

 66 

Figure 2.a illustrates the comparison of AWS and ERA5 monthly temperature time series for one of 17 67 

locations used in this study (Lake Hoare) over the time span of two decades. The cold bias is clearly 68 

visible and persistent throughout the period covered by the AWS data. The monthly temperature mismatch 69 

is particularly large during the summer months, when observations indicate actual temperatures were up 70 

to +10°C higher than ERA5 temperatures (e.g., Figure 2b). Over the rest of the year the mismatch shrank 71 

to the range of 2-6°C. Figure 2.b suggests that there is a strong seasonality in the relationship between the 72 

data sets. During the austral Winter and Summer seasons the temperatures are generally closely clustered 73 

together, systematically being closer correlated during the Winter and more dispersed during the Summer. 74 

The Spring and Fall seasons show a hysteresis that is repeated over all the comparisons. As the 75 

environment warms up during the Spring months the ERA5 temperatures are above the best-fit line and 76 

drop below it during the Fall. These seasonal biases may ultimately be helpful in revealing what climate 77 

processes must be better represented in the ERA5 reanalysis to eliminate the strong observed temperature 78 

bias. 79 

4. Discussion 80 

Our results differ significantly from the findings reported by Tetzner et al. (2019) for the Southern 81 

Antarctic Peninsula - Ellsworth Land region. For that region there is a slight cold bias of the ERA5 surface 82 

temperatures close to the coast (-0.51°C ± 0.74) and a slight warm bias in the mountain range escarpment 83 
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(+0.14°C ± 0.72) which has encouraging implications for using the reanalysis data where there is no AWS 84 

coverage, which represents most of Antarctica. In contrast, we find no clear topographic dependence on 85 

the temperature differences between AWS and ERA5 data, even though the largest differences are indeed 86 

in two high altitude areas, Beacon Valley and Mount Fleming. The magnitude of the overall cold bias 87 

(average of all differences) is more than an order of magnitude larger (5.33 ± 0.76 °C) as compared to the 88 

study of Tetzner et al. (2019) and seems to be systematic. TheERA5 temperatures show a large overshoot 89 

during the summer, with an average difference of 6.7 ± 0.8 °C (e.g., Figure 2). This may be a particularly 90 

significant problem given the fact that warm summer temperatures determine the annual melt rate of 91 

snow, glaciers, and permafrost in Antarctica. The bias presented here is also present when using the near-92 

surface bias-corrected reanalysis dataset (Cucchi et al., 2022). Modelling of snow or ice melting driven 93 

by ERA5 temperatures (e.g., Costi et al., 2018) with a strong cold bias, as observed in our study region, 94 

will result in a significant underestimate of summer melt production.  Although the ERA5 reanalysis is 95 

an outstanding source of global climate variables, the discrepancy between our results and those obtained 96 

by Tetzner et al. (2019) suggests that secondary observations should be used to test the reliability of the 97 

ERA5 dataset in polar regions. 98 

5. Conclusions 99 

We have compared the surface temperature (2-meter temperature) recorded at 17 AWS in the McMurdo 100 

Dry Valleys, Antarctica with temperatures from the ERA5 reanalysis dataset. We found that the 101 

temperatures reported by the global climate reanalysis are, on average, 5.34 ± 0.76 °C colder than the 102 

temperatures recorded at the permanent weather stations. The cold temperature bias appears to be the 103 
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largest during the warm summer months (6.7 ± 0.8 °C), when loss of snow and ice to melting is the largest. 104 

We advise using secondary observations to assess the accuracy of parameters included in ERA5 reanalysis 105 

for polar regions. 106 

 107 

Data availability. The AWS data were provided by the NSF-supported McMurdo Dry Valleys Long Term 108 
Ecological Research program (OPP-1637708) and can be accessed at: 109 
https://mcm.lternet.edu/meteorological-stations-location-map. The “ERA5-Land hourly data from 1950 110 
to present” (DOI: 10.24381/cds.e2161bac) and the “Near surface meteorological variables from 1979 to 111 
2019 derived from bias-corrected reanalysis” (DOI: 10.24381/cds.20d54e34) were downloaded from the 112 
Copernicus Climate Change Service (C3S) Climate Data Store. 113 
 114 
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 140 

Figure 1. Map of the McMurdo Dry Valleys region showing the location of the automatic weather 141 

stations (AWS) managed by LTER and their corresponding closest ERA5 grid node. 142 

 143 
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 144 

Figure. 2 a) Comparison of the monthly averaged surface temperature time series recorded at station 145 
Lake Hoare (HOEM) (blue) and the values from the closest grid node of the ERA5 reanalysis (red). b) 146 

Correlogram showing the best fit line to the relationship between the AWS temperatures and the 147 
reanalysis temperatures. Note the seasonal variation in the relationship. 148 
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